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Abstract—We present a novel 3-D deformable model-based ap-
proach for accurate, robust, and automated tissue segmentation of
brain MRI data of single as well as multiple magnetic resonance
sequences. The main contribution of this study is that we em-
ploy an edge-based geodesic active contour for the segmentation
task by integrating both image edge geometry and voxel statistical
homogeneity into a novel hybrid geometric–statistical feature to
regularize contour convergence and extract complex anatomical
structures. We validate the accuracy of the segmentation results
on simulated brain MRI scans of both single T1-weighted and
multiple T1/T2/PD-weighted sequences. We also demonstrate the
robustness of the proposed method when applied to clinical brain
MRI scans. When compared to a current state-of-the-art region-
based level-set segmentation formulation, our white matter and
gray matter segmentation resulted in significantly higher accuracy
levels with a mean improvement in Dice similarity indexes of 8.55%
(p < 0.0001) and 10.18% (p < 0.0001), respectively.

Index Terms—3-D image segmentation, brain segmentation, de-
formable models, geodesic active contour.

I. INTRODUCTION

MAGNETIC resonance (MR) has become the main modal-
ity for brain imaging that facilitates safe, noninvasive

assessment and monitoring of patients with neurodegenerative
diseases such as Parkinson’s disease, Alzheimer’s disease (AD),
epilepsy, schizophrenia, and multiple sclerosis (MS) [1]–[6].
The ability to diagnose and characterize these diseases in vivo
using MR image data promises exciting developments both
toward understanding the underlying pathologies, as well as
conducting clinical trials of drug treatments. One important
biomarker that is often used to assess patients with neurode-
generative disease is brain tissue volume. The typical rate of
global brain atrophy in MS patients has been shown to be 0.6%–
0.8% annually, which is two to three times the normal atrophy
rate [7]. Evidence has shown that white matter (WM) and gray
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matter (GM) atrophy at different rates, and each correlates dif-
ferently to disability [8]–[10]; thus, accurate measurement of
the WM and GM brain tissues can provide valuable quantitative
indicators of disease progression and, potentially, treatment out-
comes [7], [11]. Thus, the main goal of this paper is to introduce
an automatic algorithm for robust WM, GM, and cerebrospinal
fluid (CSF) segmentation to facilitate accurate measurement of
brain tissues.

Previously, to measure various tissue volumes in MRI head
scans, manual WM and GM segmentations were often per-
formed by skilled experts. Manual segmentation, however, is
extremely time-consuming, mostly limited to 2-D slice-based
segmentation, and prone to significant intra- and interrater vari-
ability [12]. In particular, manual segmentation cannot be practi-
cally and efficiently performed in situations where precise mea-
surements on a large number of scans are required, such as in
clinical trials. Therefore, a fully automatic, highly accurate, and
robust tissue segmentation technique that provides systematic
quantitative analysis of tissue volumes in brain MRI is an in-
valuable tool in many studies of neurodegenerative diseases. A
wide variety of methods have been proposed for automating the
segmentation process over the past decade that provided either
semi- or fully automated frameworks for the segmentation of
brain tissues. A review of some of these methods can be found
in [13] and [14].

One popular family of brain tissue segmentation methods is
based on normalizing the brain scans by registering (or align-
ing) them to a predefined atlas of brain tissues. One exam-
ple is the popular statistical parametric mapping (SPM) tech-
nique, which relies on voxel-based morphometry (VBM) [15].
A number of extensions to the original SPM technique have
been proposed. For example, SPM is utilized to initialize an
expectation–maximization (EM) segmentation framework [16],
which has been extended to nonrigid registration [17]. Al-
though such atlas-based methods are typically robust to arti-
facts such as acquisition noise and distortions, concerns and
discussion [18]–[20] have ensued regarding the use of tem-
plates from one population when analyzing data from another
population. For example, morphing patient scans with patho-
logically enlarged ventricles to match a normal template could
potentially distort the surrounding tissues in an unpredictable
manner. Such structural differences might lead to systematic bi-
ases and misregistration errors that are difficult to quantify [19].
Such concerns introduce yet another level of complications aris-
ing from image registration and atlas generation procedures that
add to the already nontrivial segmentation problem, especially
in the presence of anomalies such as tumors, lesions, and tissue
atrophy.
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A second family of brain tissue segmentation methods as-
signs a label for each tissue based on image statistics either by
clustering [21] or by modeling the brain tissue intensity dis-
tributions as a finite mixture of distributions such as EM [22],
maximum a posteriori (MAP) [23], simulated annealing [24],
and Gaussian mixture modeling (GMM) [25]. Other approaches
incorporate additional regional information, which is lacking
from these statistical methods, into their segmentation frame-
work. Such methods extend clustering or EM by integrating
with fuzzy connectedness [26], topological constraints [27],
Gibbs random field (GRF) [28], and hidden Markov random
field (HMRF) [29] in the segmentation task. A common diffi-
culty with many of these methods, particularly the random field
approaches, is the requirement for proper parameter settings in
a supervised setting.

A third family of brain tissue segmentation methods is based
on utilizing geometric information such as deformable models
or active contours [30] that delineates region boundaries using
a minimization of an energy functional [31], [32]. Deformable
models employing level sets [33] provide an effective implicit
representation rather than explicit parameterization of the evolv-
ing contour. However, a common problem of directly applying
the active contour approach in segmenting brain MR images
is leakage through weak or noisy edges that are ubiquitous,
especially for edge-based deformable models, e.g., geodesic ac-
tive contour [34], which describe the evolution of propagating
curve as a function of image gradient features. Some researchers
incorporated image statistics into their deformable models in
various segmentation applications by utilizing coupled surface
principle [35], [36] and fuzzy logic [37], [38] to achieve better
stability. Others employed a region-based model [39] by utiliz-
ing regional homogeneity in a curve evolution perspective and
a hierarchical implementation on brain pathology images [40].
More recently, tissue segmentation was performed and quantita-
tively evaluated [41]–[43] by using the multiphase 3-D level set
segmentation (M3DLS) algorithm [41]. M3DLS utilizes a multi-
phase extension [44] of the region-based deformable model [39]
based on the Mumford–Shah functional [45] by iteratively de-
forming two closed curves separating four regions. This mini-
mal partitioning approach assumes piecewise constant or piece-
wise smooth data and optimizes a sum of terms, including the
lengths and areas for the two closed curves, and the sums of
square intensity differences from the means for all four sepa-
rated regions. This minimization is also performed in a level set
framework [33] implicitly. Further extending this model to N -
phase allows separation of 2N regions but the number of classes
to be segmented is limited to two to the power of the number of
closed curves defined. Moreover, complexity increases as more
level sets are required and the rate of convergence is typically
slow [46].

In this paper, we propose a MR brain tissue segmentation
approach that integrates both geometric and statistical image
features into an edge-based deformable model formulation to
achieve accurate segmentation results. By utilizing this novel
hybrid image feature, we present one solution to the challeng-
ing problem of stabilizing the active contour. Similar existing
work used a topology preservation principle enforced at non-

simple points in a geometric deformable model [47], or a curve
shortening prior for smoothness in a level set framework to min-
imize leakage [40], [48]. Here, we do not explicitly apply any
smoothness and topological constraints (e.g., topology preser-
vation at nonsimple points) to the geometric deformable models
but rather rely on the proposed hybrid feature to regularize the
level sets. Other approaches used prior knowledge such as a
distance penalizing term in the level set function between two
boundary classes [35], a fuzzy decision system on contour dis-
tance to an anatomical target or atlas [37], or a dissimilarity
measure between the contour and a shape model in the en-
ergy term [49]. Here, we demonstrate our proposed approach in
segmenting complex anatomical structures such as WM, GM,
and CSF without a priori knowledge. Hence, the proposed ap-
proach is truly automated and data-driven in both statistical and
geometric sense. Furthermore, we compare the segmentation
performance of our proposed edge-based level set method to the
region-based M3DLS approach [41] on real clinical MRI scans.
We demonstrate the improved WM, GM, and CSF segmentation
accuracy and robustness when using the proposed method.

The paper is organized as follows: In Section II, we introduce
our novel hybrid geometric–statistical feature implemented on
the edge-based geodesic active contour formulation. Our modi-
fied deformable model is then used to design a new automated
3-D brain tissue segmentation algorithm for both single and
multiple MR sequence data. In Section III, we present quanti-
tative and qualitative results and analysis obtained on simulated
and real clinical MRI images, as well as comparisons to results
reported by using M3DLS. We then conclude in Section IV.

II. METHODS

In this section, we present our 3-D brain segmentation method
that integrates both geometric and statistical features in an edge-
based geodesic active contour framework. We describe the pro-
posed model in its general form. We then present a segmentation
framework for brain MRI for both single and multiple MR se-
quence data.

A. Edge-Based Deformable Model

In this study, we utilize the geodesic active contour model
[34] rather than the region-based formulation [39] due to its
computation soundness and extendibility. The geodesic model
delineates region boundaries by describing the evolution of a
curve or surface C from an initial position C0 as finding the
minima of the Riemannian curve distance

min
∫ 1

0
g (|∇I (C (q))|) |C ′ (q)| dq

= min
∫ L(C )

0
g (|∇I (C (q))|) ds (1)

where g is a general feature function, |∇I| is the gradient norm
of intensity I , and q is the parameterization of the curve C.
The right side of the equation describes the parameterized curve
C(q) such that the Euclidean length of C can be represented
as L(C) =

∮
|C ′(q)|dq =

∮
ds, where ds = |C′(q)|dq is the

Euclidean arc length or the Euclidean metric. Note that this
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geodesic formulation of the active contour relies on g, the speed
and halting feature for the evolving surface in 3-D applications
derived based on the geometric gradient feature of an image.
Generally, g is chosen as a positive-valued function of the in-
tensity gradient as in (2), where Î is a smoothed version of I
and ρ = 1 or 2 [34]. Other similar monotonically decreasing
functions, such as the sigmoid function (3) with parameters α
(width of intensity window) and β (center of intensity window)
are also often utilized [50].

g(I) = (1 + |∇Î|ρ)−1 (2)

g(I) =

(
1 + exp

[
|∇Î| − β

α

])−1

. (3)

The value of this feature function determines the propagation
of the surface by searching for the minimal Riemannian distance.
An ideal edge would ultimately have a feature value of zero at
all the pixel points along this boundary. However, propagation
relying solely on edge feature is typically sensitive to noisy and
weak edges that are frequently observed in medical images. In
particular, with the presence of complex anatomical structures,
it is often impossible to automatically and accurately derive the
desired geometric edge term to prevent contour leakage into the
surrounding regions. Consequently, achieving accurate segmen-
tation results with edge-based geodesic active contour requires
either user intervention or careful adjustment of parameters such
that the ideal boundary is minimal. This process is subjective
and ideal parameters are often difficult to derive for a fully
automated segmentation framework.

B. Proposed Hybrid Geometric–Statistical Feature

We propose to transform the feature function g in the tradi-
tional geodesic active contour formulation into a hybrid feature
function by incorporating geometric image features with voxel
statistics to help automate and regularize the evolving contours.
The minimization of the active contour is thus represented by
(4)

min
∫ L(C )

0
g (|∇I (C(q))| , P (I |Φ)) ds (4)

where for gray-scale intensity MR images, P (I|Φ) represents
the probability distribution function of a mixture model (5) from
which voxel statistics are drawn, assuming that all voxels are
identically and independently distributed and the image is to be
described with K class labels.

P (I) =
K∑

k=1

P (k)P (I |Φk ) (5)

where P (k) represents the prior probability of the class label
k and P (I|Φk ) is the conditional density function of the kth
class given Φ, the parameter set of the distribution. We employ
Gaussian distributions as

P (I |Φ) =
[

1
σ
√

2π

]
exp

[
−(I − µ)2

2σ2

]
(6)

which require a parameter set Φ = {µ, σ}, where µ and σ
are the mean and standard deviation. This parameter estimation

problem for GMM is solved by applying the EM algorithm [51]
to the image intensity histogram.

The design of g in (4) utilizes both a geometric term and
a statistical term. Geometrically, the presence of strong image
gradients indicates significant structural content. As a result, the
contour propagation speed slows to a halt. On the other hand,
a lack of edge features often indicates the presence of a homo-
geneous region. Statistically, high voxel probability indicates a
high likelihood of the voxel belonging to the class of interest,
warranting a fast contour propagation. If the voxel likelihood is
reduced, the contour propagation is slowed down accordingly.
The contribution of voxel likelihood to the contour propagation
exhibits an inverse behavior to that of image gradients. Since
both geometric and statistical features are essential to the con-
tour stability, they can be combined into a single hybrid feature
function by modeling the aforementioned behavior as

g(I) = sigmoid(|∇I|) sigmoid−1 (P (I |Φ))

=

(
1 + exp

[
|∇Î| − β

α

])−1 [
− ln

(
1 − P (I |Φ)

P (I |Φ)

)]

(7)

where the first term is the traditional geometric feature as in
(3) and the second term models the inverse behavior of voxel
likelihood to image gradients using an inverse sigmoid function
with magnitudes between −1 and 1. Complementarily, these
two components in the new hybrid feature help regularize the
evolving contour in both the geometric and statistical sense. The
minimization of (4) is then achieved by computing the Euler–
Lagrange equation [34]

d

dt

∫ 1

0
g (C(q)) |C ′(q)|dq|t=0

=
∫ L(C0 )

0

(
[∇g(C0) · �N ] �N − g(C0)κ �N

)
· C0 ds (8)

where κ is the Euclidean curvature, �N is the inward unit normal,
and C0 is the initial curve or surface, and performing steepest
gradient search (9), to deform C toward a minima

∂C

∂t
= g(I)(φκ + c) �N − ε(∇g · �N) �N C (0) = C0 (9)

where {ψ, c, ε} are the free parameters introduced to govern
curvature, propagation, and advection strengths, respectively.
With the designed hybrid feature, the algorithm uses only the
propagation term. Other terms are shown here for completeness.
This curve evolution equation is then embedded in a level set
function u and solved for the steady state solution:

∂u

∂t
= g(I)(φκ + c) |∇u| + ε∇g(I) · ∇u u (0) = u0 .

(10)
The numerical implementation is based on the curve evo-

lution algorithm via level sets [33], which utilizes an upwind
piecewise continuous approximation scheme to provide a nu-
merically stable solution in the presence of singularities.

As summarized in Table I, the rationale behind using this
new hybrid feature is to enable handling of situations where
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TABLE I
EFFECTS OF REGULARIZING CONTOUR PROPAGATION USING GEOMETRIC AND

STATISTICAL FEATURES

the image gradient is high (small sigmoid(|∇I|) value) and the
posterior probability of voxel is low, in which the voxel is con-
sidered to be a significant feature but lies outside of the desired
region. We, therefore, aim to steer the contour slowly away
from this voxel by assigning a small negative feature value. On
the other hand, if the posterior probability is high, this indi-
cates a significant feature within the desired region; therefore, a
small positive feature value is assigned. In contrast, if the image
gradient is low (large sigmoid(|∇I|) value) and the posterior
probability is low, the voxel is considered to be a weak gradi-
ent feature that lies outside of the desired region, warranting a
large negative feature value such that contour can be quickly
steered away from that region. If the posterior probability is
high, a homogeneous area in the desired region is indicated, and
is rewarded with a large positive feature value for fast contour
expansion. In summary, the proposed hybrid feature provides an
adaptive active contour propagation based on local information
reflecting both geometry and statistical homogeneity.

C. Segmentation of Brain MRI

Based on the proposed active contour model, we develop a
fully automated 3-D brain tissue segmentation algorithm for
MR images. The segmentation procedures (Fig. 1) are a gener-
alization and extension of earlier work [52]. We first present the
proposed algorithm for T1-weighted (T1w) MRI scans, which
are most often used for brain tissue segmentation due to the
generally high WM and GM contrast and the reduced effects
of WM lesions in patients with neurodegenerative diseases. We
later extend the proposed method to simultaneously incorporate
additional MR sequence data, such as T2-weighted (T2w) and
PD-weighted (PDw) images, in addition to T1w.

To segment the brain tissues, we first estimate the GMM
parameters such that each mixture distribution represents one
single class. Based on these estimated distributions, the normal-
ized posterior probability of each voxel is calculated. We derive
the hybrid geometric–statistical feature as described above by
combining both the voxel statistics and the image gradient in-
formation. To initialize the active contour, we first introduce a
voxel threshold ts on the posterior probability to further regu-
larize this contour initialization by effectively removing voxels
outside of the desired region boundaries due to noise or partial
volume artifacts. Based on the thresholded masks, we form the
skeleton representation using standard 2-D morphological se-
quential thinning (3 × 3 kernel) and sequential pruning (3 ×
3 kernel) [53] iteratively until no further changes occur. This
is done slice-by-slice in 2-D as morphological operations are
performed on discrete numbers of voxels, and to do this in 3-D

Fig. 1. Block diagram of the proposed MRI brain segmentation algorithm.
Asterisk (∗) denotes the proposed novel hybrid geometric–statistical image
feature described in Section II-B.

on anisotropic scans would require resampling of the acquired
data, which would potentially introduce additional artifacts. The
hybrid feature and the contour initialization are determined indi-
vidually for each tissue to be segmented, and each contour is then
propagated independently. After the contours converge, minor
overlaps and gaps occurred between the individually evolving
contour boundaries are re-assigned to a single label by com-
paring the individual z-scores, the difference between voxel
intensity to the sample mean normalized by the sample stan-
dard deviation, of all tissue classes. A brief description of the
algorithm is described as follows:
Step 1: Given raw MRI scan U .
Step 2: Preprocess with intensity inhomogeneity correction,

noise filtering, and brain extraction to obtain V .
Step 3: Calculate gradient norm |∇I| of pixel intensity I in V .
Step 4: For k = 1 to K, tissue class labels:

1) determine the GMM distribution parameter set by
using EM: Φk = {µk , σk};

2) for each I, calculate normalized probability
P (I|Φk ).

Step 5: For k = 1 to K, tissue class labels:
1) derive hybrid geometric–statistical feature: gk (I) =

g(|∇I|, P (I|Φk ));
2) derive initial contour C0,k by thresholding P (I|Φk )

at tS = 0.1 and skeletonizing;
3) propagate curve Ck from C0,k on gk (I) until con-

vergence to obtain class label image Lk (I).
Step 6: For each I , if Lk (I) = 1 for more than one k or Lk (I) =

null for all k, assign Lk (I) = 1 for k with the highest
z-score.
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TABLE II
PARAMETER SENSITIVITY OF A SIMULATED BRAIN VOLUME (9% NOISE,

40% INHOMOGENEITY)

In step 5, the performance gain by setting ts > 0 is demon-
strated in Table II, and we show that for 0.1 ≤ ts ≤ 0.6, the final
segmentation accuracy in a simulated brain volume is shown not
to be sensitive to the parameter value tested but is necessary for
removing extreme outliers before skeletonizing is performed.
The parameter is set to ts = 0.1 for all subsequent experiments,
both simulated and clinical.

D. Extension to Multiple MR Sequence Data

To further demonstrate the flexibility of the proposed seg-
mentation approach, we extend our method so that information
from multiple MR sequences with different contrast properties
can be incorporated when the data is available. Assuming regis-
tered images, we first replace the geometric feature component
in the proposed hybrid active contour feature (7) with the mul-
tidimensional vector gradient norm derived from all available
data sequences. To derive the statistical active contour feature
term, the GMM parameters and the voxel statistics are individ-
ually estimated for each contrast modality m given M input
modalities. Since our main goal is to improve the ability to dif-
ferentiate between various tissue labels, we derive an pairwise
intensity contrast term Cm

i,j as a ratio of absolute intensity dif-
ference between the EM estimated means µ of labels i and j
over the observed intensity range of [IMax . . . IMin ] (11) and
then normalize (12).

Cm
i,j =

|µm
i − µm

j |
Im
Max − Im

Min
(11)

C̄m
i,j =

Cm
i,j∑M

m=1 Cm
i,j

. (12)

This intensity contrast factor is used as an optimized weight-
ing factor to linearly combine individual posterior probability,
P (I |Φm

k ) as in (13), for label k in modality m to form a new
posterior probability. This is done by using all relevant pair-
wise contrast terms, defined between label k and all others.
This ensures that the MR sequence with greater contrast re-
ceives a greater weight with respect to other lower contrast MR
modalities used. Equation (13) shows how the final posterior
probability is computed as a function of the means and vari-
ances of each tissue and modality. In the case where tissues at
different modalities exhibit equal variances, more emphasis is
placed on the scan that possesses the greater difference between
the expected values of the tissues of interests, thereby facilitat-
ing separation. In the other case where the differences in the
sample means are equal, the differences in variance are taken
into account inherently in the individual posterior probability
terms. The resulting probability replaces the posterior proba-
bility derived from single contrast input in the segmentation

procedure.

P (I |Φk ) =

∑M
m=1

∑K
i=1 C̄m

i,kP (I |Φm
k )∑M

m=1
∑K

i=1 C̄m
i,k

. (13)

E. Data Preprocessing

We employed the nonparametric nonuniform intensity nor-
malization (N3) algorithm [54] for intensity inhomogeneity cor-
rection using default parameter settings (width of deconvolution
kernel = 0.15, number of iterations = 50, sampling factor = 4,
characteristic distance = 200 mm, stopping criteria = 0.001).
All scans were then noise filtered using an edge-preserving
Perona–Malik anisotropic diffusion filter [55] (number of iter-
ations = 4, conductance = 3.0) to further enhance the image
signal-to-noise ratio. Brain masks were generated using the pro-
vided ground truths consistent with other published methods to
facilitate direct comparisons, or alternatively, many methods
are also available for this brain extraction task [56]–[58]. For
the clinical datasets where the ground truths are not available,
the brain masks were generated with the brain extraction tool
(BET) [56] using default parameter settings.

III. RESULTS AND DISCUSSION

We applied our proposed segmentation to both simulated and
real clinical MRI scans, and demonstrated in the following sec-
tions: 1) the accuracy of the proposed segmentation method on
simulated T1w brain MRIs; 2) the segmentation improvement
on multiple MRI sequences; 3) the accuracy of the proposed
method on real clinical MRI scans of normal adults; and 4)
the qualitative performance of the proposed methods on clinical
MRI scans of MS and AD patients.

We first validated our proposed method on 18 simulated T1w
BrainWeb [59] MRI images (with 0%/1%/3%/5%/7%/9% noise,
0%/20%/40% inhomogeneity, 181 × 217 × 181 dimension,
1 × 1 × 1 mm3 spacing). We also performed multisequence
segmentation based on six T1w/T2w/PDw MRI triplets (with
0%/1%/3%/5%/7%/9% noise, 0% inhomogeneity). Second, 18
real high-resolution clinical T1w MRI scans from the Inter-
net Brain Segmentation Repository (IBSR) [60] (coronally ac-
quired, 256 × 128 × 256 dimension, 0.837 × 0.837 mm2 to
1 × 1 mm2 in-plane spacing, 1.5 mm slice thickness) were also
segmented. For both datasets, the “ground truth” is known for
comparisons. For the BrainWeb dataset, the ground truth is the
phantom atlas used to generate the simulated scans, whereas for
the IBSR dataset, the ground truth is the provided expert-guided
manual segmentation label for each of the clinical scans. Lastly,
from the MS MRI Research Group (MS/MRI), real clinical 1.5 T
spoiled gradient (SPGR) MRI scans (axially acquired, 256 ×
256× 120–160 dimension, 0.937× 0.937× 1.50 mm3 spacing)
were taken at multiple sites. Real clinical 1.5 T magnetization
prepared rapid gradient echo (MP-RAGE) MRI scans (sagit-
tally acquired, 256 × 256 × 166 dimension, 0.937 × 0.937 ×
1.20 mm3 spacing) were also obtained from the AD Neuroimag-
ing Initiative (ADNI) of the LONI image data archive (IDA) [61]
initiated by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB),
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the Food and Drug Administration (FDA), private pharmaceuti-
cal companies, and nonprofit organizations. These clinical scans
were segmented and qualitatively evaluated. For all experiments,
the parameters for the level set evolutions are set at {ψ = 0.0,
c = 1.0, ε = 0.0} to reinforce propagation and effectively re-
move boundary attraction and smoothness regularizations. The
convergence criteria for the gradient descent optimization is
defined as either less than 0.5% root-mean-square change in
the level set function or, if not achieved, a maximum of 100
iterations reached.

The average surface distance between the ground truth and
the computed segmentation was computed for each test scan by
approximate nearest neighbor searching [62]. In addition, the
Dice similarity index [63] was also chosen for the quantitative
evaluation of the 3-D brain segmentation results to facilitate
direct comparisons to other published results

Dice similarity index :
2T+

2T+ + F+ + F−
× 100%. (14)

We denote the true positives, true negatives, false positives,
and false negatives as T+ , T−, F+ , and F−, respectively, be-
tween the known ground truth and the segmentation results. We
compared our segmentation results with those of the M3DLS
method [41].

A. Segmentation Validation Using Simulated Brain MRI

We first validated a three-class (WM, GM, and CSF) segmen-
tation using the proposed method on the simulated T1w brain
MRI data. Segmentation was performed using the traditional
geometric feature only, the statistical feature only, and the pro-
posed hybrid feature on all 18 datasets with varying noise and
intensity inhomogeneity levels. For the edge-only level set evo-
lution, the parameter set {ψ = 2.0, c = 1.0, ε = 4.5} was used
to enforce a stronger smoothness constrain; otherwise, contours
leaking through weak edges were often observed. For the sta-
tistical feature term only, the parameter set {ψ = 0.0, c = 1.0,
ε = 0.0} was used, same as the hybrid approach. Qualitative
results in Fig. 2 demonstrated very good resemblance between
the provided phantom label and the segmentation results based
on the hybrid feature. Table III shows that, on average, over all
noise and inhomogeneity levels, the proposed method achieved
consistently accurate segmentation results for both WM and
GM with similarity indexes of 93.71% (σ = 2.11%, average
distance = 0.27mm) and 92.59% (σ = 2.40%, average distance
= 0.30mm). Segmentation of structures such as CSF by using
the proposed approach also achieved considerable (>70%) sim-
ilarity of 77.75% (σ = 6.15%, average distance = 2.24 mm).
The CSF results were not as stable as WM and GM mainly due
to the much smaller structural volume, leading to increased sen-
sitivity to estimation errors in the active contour initialization
and feature derivation. Nonetheless, the overall segmentation
results were on par if not better than other previously published
results [16], [27], [64].

To statistically evaluate the differences of segmentation re-
sults between the proposed hybrid approach, and the contours
based on geometric-only and statistical-only features, we calcu-

Fig. 2. Qualitative segmentation performance of two simulated T1w brain
images showing the provided phantom label, raw images and the segmentation
results obtained by using the proposed hybrid feature. We show three slices for
both the best case (0% noise, 0% inhomogeneity) and worst-case (9% noise,
40% inhomogeneity) scenarios. White, light gray, and dark gray colors represent,
respectively, the WM, GM, and CSF classes in the tissue and phantom labels.
We note the results from the hybrid approach resemble the phantom for both
the best and worst input scenarios.

lated the p-values (p < 0.05 indicates a statistically significant
difference in the group means). Compare to results from us-
ing only the traditional geometric feature, the proposed hybrid
approach achieved significantly higher similarity indexes and
reduced surface distance across all scans. On average, the pro-
posed method achieved increased similarity indexes of 5.36%
(p = 0.0002) in WM, 7.23% (p < 0.0001) in GM, and 9.30%
(p < 0.0001) in CSF segmentation results with reduced sur-
face distance of 3.99 mm (p < 0.0001) in WM, 0.27 mm (p <
0.0001) in GM, and 4.86 mm (p < 0.0001) in CSF. Compare
to results from using only the statistical feature, the proposed
hybrid approach only achieved slightly better similarity indexes.
However, we observed that, on average, the proposed method
was able to significantly reduce the average surface distance by
4.44 mm (p < 0.0001) in WM and 3.79 mm (p < 0.0001) in CSF.
These results showed that using the geometric term alone was
highly sensitive to image artifacts and require contour regular-
ization, and using the statistical term alone caused the contours
to deviate from the true edges. Only when incorporating both
features we can evolve the contour in the appropriate statistical
space while maintaining high geometric relevance at the same
time. Processing a single BrainWeb volume takes approximately
55 min (dual 3.20 GHz Xeon PC with 3.25 GB memory) to 75
min (3.60 GHz Pentium4 PC with 2 GB memory), comparable to
the processing time required by other conventional techniques.

B. Segmentation Improvement Using Multiple MR Sequences

We next performed a three-class (WM, GM, and CSF)
segmentation using the proposed method on the simulated
T1w/T2w/PDw brain MRI data. Segmentation was performed
on six datasets with varying noise levels and 0% intensity
inhomogeneity. Qualitative results in Fig. 3 illustrated very
good resemblance between the provided phantom label and the
segmentation results. Table IV demonstrates the quantitative
segmentation accuracies. On average, over all noise levels,
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TABLE III
QUANTITATIVE EVALUATION OF SEGMENTATION RESULTS OBTAINED BY USING THE GEOMETRIC FEATURE, THE STATISTICAL FEATURE, AND THE PROPOSED

HYBRID APPROACH ON 18 SIMULATED T1W BRAINWEB SCANS

Fig. 3. Qualitative segmentation performance of a multiple simulated MR se-
quence (T1w, T2w, PDw) brain images showing the provided phantom label,
raw images (0% noise, 0% inhomogeneity), and the segmentation results ob-
tained by using the proposed approach. White, light gray, and dark gray colors
represent, respectively, the WM, GM, and CSF classes in the tissue and phantom
labels. We show three slices for the test case and note improved segmentation
results on multiple MR sequence.

the proposed method achieved consistently accurate segmen-
tation results for WM, GM, and CSF with similarity in-
dexes of 96.24% (σ = 1.13%, average distance = 0.15 mm),
94.14% (σ = 1.24%, average distance = 0.24 mm) and 81.57%
(σ = 2.82%, average distance = 1.56 mm), respectively. When
compared to the experiment on single simulated T1w brain
images, segmentation using multiple MR sequence data pro-
vided an average improvement in similarity indexes of 1.29%
(p = 0.0479), 0.44% (p = 0.4627), and 3.55% (p = 0.1403) for
WM, GM, and CSF, respectively. The segmentation improve-

TABLE IV
QUANTITATIVE EVALUATION OF SEGMENTATION RESULTS OBTAINED BY USING

THE PROPOSED METHOD ON 6 SIMULATED T1W/T2W/PDW SCANS

ments are not statistically significant, which is not surprising
given that the synthetic T1w brain images by themselves al-
ready have the strong image contrast required to distinguish
between the majority of WM and GM tissues. Additional MR
sequences such as T2w and PDw in this case, helped improve the
overall robustness by achieving a much better balance between
the WM, GM, and CSF estimation as observed by the T+ and
T− performance. Table III (column 1) shows that with only T1w
scans as inputs, the differences between the T+ and T− were
7.77%, 8.67%, and 24.09%, respectively, for WM, GM, and
CSF, whereas with T1w, T2w, and PDw inputs (Table IV), these
differences were much reduced to 2.84%, 0.24%, and 6.95%.

C. Segmentation Comparisons Using Clinical MR Scans
of Normal Adults

We applied the proposed method to segment 18 clinical IBSR
brain images. The images were segmented using a three-class
(WM, GM, and CSF) segmentation. The qualitative results are
shown in Fig. 4. The tissue labels were then postprocessed due
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Fig. 4. Qualitative segmentation performance of a real clinical T1w brain
images (IBSR #08) showing the raw images, the expert-guided manual seg-
mentation label, and the segmentation results obtained by using the traditional
edge feature and the proposed hybrid approach. We show three slices for the
three-class segmentation case and the postprocessed case. White, light gray,
and dark gray colors represent, respectively, the WM, GM, and CSF classes in
the segmentation labels. We note the good resemblance between the segmenta-
tion results and the raw image, and between the postprocessed results and the
expert-guided manual segmentation labels.

to a known limitation of the provided manual segmentation
labels. It has been reported previously [41] that the expert-
guided manual segmentation label contains much of the cortical
CSF being mislabeled as GM. We have confirmed this with
our own observations. As observed from Fig. 4, we note that
the original segmentation results matched closely with what
can be visually observed from the raw images. However, this
observation did not correspond well to the provided expert-
guided manual segmentation label due to the existing limitation.
If quantitative evaluation was to be performed on this result, both
GM and CSF would produce much lower accuracies than what
were actually present.

To enable a valid comparison by retaining only the ventricular
CSF for comparison, we employed the following postprocessing
scheme:
Step 1: Re-assign segmented CSF labels close to (≤5 mm) any

background labels as GM.
Step 2: Define a rectangular region of interest (30% of the mask

width in the superior–inferior orientation and 50% for
both left–right and anterior–posterior) around the brain
mask centroid. Apply 2-D morphological thinning (3
× 3 kernel) [65] on CSF pixels outside the region of
interest in coronal slices, and singly links are removed.

Step 3: Identify the largest 3-D connected component as the
desired ventricular CSF. Apply 3-D morphological di-
lation (3× 3× 3 kernel) to this final mask, and re-assign
all original CSF labels outside as GM.

This postprocessing scheme allowed us to generate re-
sults comparable to the provided manual label. We show in
Table V that the results obtained by using the proposed method
achieved similarity indexes of 87.55% (σ = 2.92%, average
distance = 0.54 mm), 93.18 (σ = 0.92%, average distance =
0.38 mm), and 77.39% (σ = 11.15%, average distance =
3.12 mm) for WM, GM, and CSF, respectively, averaged across
the 18 images tested. To statistically compare the segmentation

TABLE V
QUANTITATIVE EVALUATION OF SEGMENTATION RESULTS ON 18 REAL

CLINICAL T1W IBSR SCANS

performance of our hybrid active contour approach against the
region-based active contour M3DLS algorithm, a one-sample t-
test was performed to calculate the p-values (standard deviations
were not reported by M3DLS [41]). Both methods are automatic
and based on 3-D level set implementation with the key differ-
ence in the active contour formulation and the optimization
functional. The proposed method achieved significantly higher
accuracies with an average improvement of 8.55% (p < 0.0001)
in WM and 10.18% (p < 0.0001) in GM segmentation similar-
ities. CSF results were not reported with the M3DLS method;
however, our proposed approach achieved considerable (>70%)
similarity. Furthermore, the segmentation results achieved by
M3DLS were conservative with low true positives. This can be
mainly attributed to the fact that the optimization functional in
M3DLS modeled each class as piecewise constant by taking
only the intensity square differences from the means. However,
variations within each segmented class are not considered, such
that if, intrinsically, WM contains significantly larger intensity
variance than GM, voxels belonging to WM would potentially
be mislabeled as GM if the voxel intensities are closer to the
estimated GM mean. This lead to undersegmentation in WM
(undersegmentation in GM is attributed to the known limitation
in the manual labels), and M3DLS is required to postprocess
the segmentation results by incorporating an additional mor-
phological dilation step [42]. On the other hand, by integrating
both geometric and statistical features into an edge-based de-
formable model, the proposed hybrid approach captures both the
image edge geometry and the voxel statistical homogeneity, and
achieved higher segmentation accuracies with less additional
computation complexity.

D. Segmentation Performance Using Clinical MR Scans of MS
and AD Patients

Lastly, we applied the proposed method to segment clin-
ical MRI brain scans of MS and AD patients. The images
were segmented using a three-class (normal appearing WM,
GM grouped with diseased WM, and CSF) segmentation. The
qualitative results are shown in Fig. 5, demonstrating that the
proposed approach appears stable on clinical scans. Fig. 5(a)
shows a typical clinical MRI scan of a MS patient, whereas
Fig. 5(b) illustrates an example scan of a MS patient with en-
larged lateral ventricles. Both scans were segmented without any
gross misclassifications. In addition, we demonstrated segmen-
tation results from an MRI scan where the brain extraction step
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Fig. 5. Qualitative segmentation performance of real clinical T1w brain images (UBC MS/MRI and LONI IDA) showing the raw images and the segmentation
results obtained by using the proposed approach. We show two slices each for the three-class segmentation. White, light gray, and dark gray colors represent,
respectively, the normal appearing WM, GM grouped with diseased WM, and CSF classes in the segmentation labels. We note the approach is stable on (a) a
typical MS patient scan (TE/TR = 3.176/7.655 ms, TI = 450 ms, Flip Angle = 0◦), (b) an MS patient scan with enlarged ventricles (TE/TR = 4.000/11.000 ms,
TI = 0 ms, Flip Angle = 0◦), and (c) an MS patient scan with an inaccurate brain mask (TE/TR = 3.917/8.110 ms, TI = 0 ms, Flip Angle = 0◦). AD patient
scans at (d) year one (TE/TR = 3.95/9.124 ms, TI = 1000 ms, Flip Angle = 8◦) and (e) year two (TE/TR = 3.98/9.124 ms, TI = 1000 ms, Flip Angle = 8◦).

inaccurately included part of the eyes in the brain mask in
Fig. 5(c). This error in the brain mask did not seem to cause
visible problems for the algorithm in the adjacent brain tissue.
Furthermore, Fig. 5(d) and (e) shows segmentation results of
scans from an AD patient one year apart. We again noticed vis-
ibly consistent segmentation in the tissue labels in the presence
of tissue atrophy/ventricle enlargement over time. In our T1w
test scans, the intensity difference between GM and diseased
WM is subtle, and separating these two class types is likely
not possible without additional MRI sequences that are more
sensitive to WM pathology, such as PDw or T2w, or relying on
prior probability maps such as those derived from a training set.
We have left these experiments for future work. In its current
form, the proposed method can potentially be used for the as-
sessment of disease severity by providing stable and consistent
segmentations of CSF and normal appearing WM.

IV. CONCLUSION

We proposed a 3-D brain MR segmentation method based on
deformable models and demonstrated accurate and stable brain
tissue segmentation on single as well as multiple MR sequence
scans. The main contribution of our work is that we employed a
geodesic active contour formulation by integrating both image
geometry and voxel statistics into a hybrid geometric–statistical
feature, which acts as a stabilizing regularizing function for the
extraction of complex anatomical features such as WM, GM,
and CSF. We validated our technique first by using both single
and multiple simulated brain MRI sequence data. Improved seg-
mentation accuracy and robustness were shown in results from
the proposed hybrid approach against those using individual ge-
ometric or statistical features only. Furthermore, on real clinical
MRI datasets, we also demonstrated improved accuracy over
a state-of-the-art approach, the region-based M3DLS. We also
demonstrated consistent and robust results when segmenting
MRI scans of both MS and AD patients.

Issues identified for possible future work include enhancing
the statistical distribution estimation process by using complex
intensity distribution estimation methods such as nonparametric

and partial volume models, and extending additional segmen-
tation classes, hierarchy or feature cues for segmentation of
anomalies such as WM lesions or tumors.
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